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Finite amplitude convection cells 
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In  this paper we consider two-dimensional steady cellular motion in a fluid heated 
from below at large Rayleigh number and Prandtl number of order unity. This 
is a boundary-layer problem and has been considered by Weinbaum (1964) for 
the case of rigid boundaries and circular cross-section. Here w0 consider cells 
of rectangular cross-section with three sets of velocity boundary conditions: all 
boundaries free, rigid horizontal boundaries and free vertical boundaries (re- 
ferred to here as periodic rigid boundary conditions), and all boundaries rigid; 
the vertical boundaries of the cells are insulated. It is shown that the geometry of 
the cell cross-section is important, such steady motion being not possible in the 
case of free boundaries and circular cross-section; also that the dependence of 
the variables of the problem on the Rayleigh number is determined by the bal- 
ances in the vertical boundary layers. 

We assume only those boundary layers necessary to satisfy the boundary 
conditions and obtain a Nusselt number dependence N N R) for free vertical 
boundaries. For the periodic rigid case, Pillow (1952) has assumed that the buoy- 
ancy torque is balanced by the shear stress on the horizontal boundaries; this is 
equivalent to assuming velocity boundary layers beside the vertical boundaries 
(rather than the vorticity boundary layers demanded by the boundary condi- 
tions) and leads to  a Nusselt number dependence N N Rf. If it  is assumed that the 
flow will adjust itself to give the maximum heat flux possible the two models are 
found to be appropriate for different ranges of the Rayleigh number and there is 
good agreement with experiment. 

An error in the application of Rayleigh’s method in this paper is noted and the 
correct method for carrying the boundary-layer solutions round the corners is 
given. Estimates of the Nusselt numbers for the various boundary conditions are 
obtained, and these are compared with the computed results of Fromm (1965). 
The relevance of the present work to the theory of turbulent convection is dis- 
cussed and it is suggested that neglect of the momentum convection term, as in 
the mean field equations, leads to a decrease in the heat flux at  very high Rayleigh 
numbers. A physical argument is given to derive Gill’s model for convection in a 
vertical slot from the Batchelor model, which is appropriate in the present work. 

~~ ~ ~ ~ ~ 

1. Introduction 
The onset of motion in a fluid heated from below is now well understood. 

Above a critical Rayleigh number steady convection cells are set up, and the 
motion in the range just above this critical Rayligh number has been studied by 
many authors (see, for example, the review article by Segel (1966)). 
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If the Rayleigh number is further increased, time-dependent motion and then 
fully developed turbulence set in. It is considered to be of value to study steady 
convection at large Rayleigh numbers, both for a better understanding of the 
cellular motion, and, hopefully, to follow the breakdown of such motion. 

Two-dimensional cells for Prandtl number of order unity are studied here. The 
theoretical results may then be compared with the values computed by Fromm 
(1965). 

The equations of the Boussinesq approximation are used (this problem of 
convection between parallel plates has been well stated in many references, for 
example Chandrasekhar (1961)). The equations are 

( i + v . V ) T  = K V ~ T ,  

(i+V.v) v = -v(E) +vV2v+ga(T-To)f ,  

v.v = 0, (3) 

where v = velocity, T = temperature, To = mean temperature, v = kinematic 
viscosity (constant), K = thermometric conductivity (constant), a = coefficient 
of thermal expansion, p = pressure - po gz, po = density. The co-ordinates are 
z (vertical) and x in the plane of the two-dimensional cell; .i denotes a unit vector 
in the + x direction, 5 a unit vector in the + y direction and f a unit vector in the 
+ z direction. 

We non-dimensionalize as follows : 

r = dr’, 
a2 t = - t’, 
K 

T = To + ATB, 

where the temperature difference between the plates is 2AT, the separation of the 
plates is d. 

A stream function is introduced so the velocity is given by v = V x ($5). For 
steady motion, dropping the primes, we find 

-J($,O) = ( v . V ) B  = V28, (4) 

1 
- ( v . V ) v  = -V,+V2v+RBf, 
0- 

and, eliminating the pressure from ( 5 ) ,  

v27 + J($, 7) = Re,, (6) 

where J is the Jacobian, aaab aaab 
’ axaz ax ax’ 

J ( a  b )  = ------ 

7 is the vorticity 7 = -V2$;  R is the Rayleigh number R = gcrhTd3/~v; cr is 
the Prandtl number 0- = V / K .  

It should be noted that the final non-dimensionalization for the velocity, 
giving vScaled N 1, is not determined by the free or rigid boundary conditions alone; 
for large Rayleigh numbers we take v N Rb in the above equations and determine 
b by the balances in the vertical boundary layers. 
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We consider here fluids within the regions 0 6 z d 1 , 0  6 x d L, for three sets 
of velocity boundary conditions. The temperature boundary conditions are for 

all cases -1 
+ 1  

B =  on 
1 

Z = 0’ Bs = 0 on x =  0,L. 

Free case : free boundary conditions at  the horizontal boundaries (zero tan- 
gential viscous stress), periodic vertical boundary conditions; that is, free vertical 
boundaries from the asymmetry of the single cell problem-see Fromm (1965). 

The boundary conditions are: $ = 7 = 0 on all boundaries. It should be noted 
that for free boundary conditions and circular cross-section the only non-zero 
torque is that due to the buoyancy forces and steady cellular motion is therefore 
not possible (for any temperature boundary conditions). For rectangular cross- 
section the pressure and normal viscous stress give rise to a balancing torque 
and this problem is solved below in good agreement with the calculations of 
Fromm (1965). The geometry of the cell cross-section is thus seen to be of import- 
ance in this problem. 

Rigid case: all boundaries rigid (zero velocity). The boundary conditions are: 
@ = 0 on all boundaries; a$lax = 0 on x = 0, L; a$/& = 0 on z = 0 , l .  

Periodic rigid case : rigid horizontal boundaries, periodic vertical boundary 
conditions. The boundary conditions are: $ = 0 on all boundaries; a$/& = 0 on 
z = 0 , l ;  7 = 0 on x = 0,L. 

For this set of boundary conditions and u = 1 the problem of two-dimensional 
cells may be shown to be equivalent to that of steady axisymmetric cellular 
motion between two rigid rotating cylinders provided that the following relations 
hold: 

6M 
(ii) < 1, 

where Ml is the angular velocity of the inner cylinder, M, is the angular velocity 
of the outer cylinder, SM = M, - M, and M is the average angular velocity of the 
cylinders; Sr = r2 - rl and r is the average radius of the cylinders; T is the Taylor 
number and is equivalent to the Rayleigh number in the present problem. This 
equivalence is discussed in Chandrasekhar (1961) for the linear stabiIity problem. 

2. Formulation 
2.1. Balances 

It is assumed that a boundary-layer solution exists and that the streamlines in 
each cell are closed. The variables are expanded in asymptotic series of interior 
and boundary-layer functions, 

2 4 

i=l i = 3  

+Rb-ma ‘PI (a) ( x ,  2) + Rb-m’a’cpp(x, 2) + . . ., 
$ = Rbcp0(x, Z) + Rb-ma C cp$$i(g, Z )  + Rb-m’a‘ c p g i ( ~ ,  g) 

31-2 



580 J. L. Robinson 

where i = 1 ,2  denote boundary-layer solutions in the vertical boundary layers, 
i = 3,4 denote boundary-layer solutions in the horizontal boundaries. In  later 
discussion we disregard the superscripts. 

5 = Riax is a boundary-layer co-ordinate for a vertical boundary layer and 
g = Ria; is a boundary-layer co-ordinate for a horizontal boundary layer. 

yo is chosen to satisfy the boundary conditions yo = 0 on all boundaries; the 
boundary-layer stream functions are introduced to satisfy the boundary con- 
ditions a$pn = 0 (rigid boundaries) or a2$/an2 = 0 (free boundaries) to order 
Rb, where n is the co-ordinate perpendicular to the boundary; the interior stream- 
functions yp) and yib) are introduced so that $ = 0 on all boundaries to order 
max (Rb-ma, Rb-m'a') ; further boundary-layer streamfunctions must then be intro- 
duced, and so on. 

The constants b, a, a', m, m' will be determined later for the three sets of boun- 
dary conditions. 

The driving force for the motion is the buoyancy which appears in (6) as Re,. 
As this is greatest in the vertical boundary layers we require that the following 
balances hold in those regions. 

(a) From equation (4) J($,  0) - V20 within the boundary layer, i.e. 

Rb = R2a, b = 2a ( 7 )  

(provided the interior velocity is of importance in this layer; this is so for all 
cases considered here). 

(b) From equation (6) Re, N V2yBL or Re, - J($,yBL) ((T - 1 here); i.e. 
Rlfa = Rb-ma+.ia or Rl+a = R2b-mafZa (where y B L  = - Rb--maV2(pBL). Since b = 2a 

these conditions are equivalent and all three terms are of importance in the 

(c) The remaining balance is derived from the velocity boundary conditions on 
boundary layer (5-m)a = 1. (8) 

the vertical boundaries. 

Free boundary conditions 

From ( 7 ) ,  (S), (9) we obtaina = Q, b = $. Since heat flux N velocity x temperature 
x horizontal extent - R4, the Nusselt number N N Rg. 

Rigid boundary conditions 

From (7), (S), (10) we obtain a = 3, b = 1. 2 

Heat flux N Ri, 

N N Ra. 

In order to provide the necessary conduction of heat through the horizontal 
boundaries we require (convection in vertical boundary layers) - Ra - (con- 
duction through horizontal boundaries) = - J(aO/ax) dz N Ra'. Therefore a' = a;  
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the same balances then hold except that in all cases the buoyancy term does not 
appear in the highest-order horizontal boundary-layer equations. The scaling 
constants are then 

b=' a = a ' = '  m = m ' = 1 ;  

b = Z  a = a ' = 1  m = m ' = 2 ;  
rigid case: 2 )  4, 

3, 3 ,  free case: 

periodicrigidcase: b = 3, a = a' = 1 37 m = 1,  m' = 2. 

The above agrees with the result N - Ra of Weinbaum (1964) for rigid boun- 
dary conditions and cylindrical geometry. In that paper, the result of the Nusselt 
number calculation is compared (p. 423) with heat transfer between two hori- 
zontal plates. The discussion given later in this paper indicates that below R E 

4 x lo5 the heat flow predicted by the model with rigid boundary conditions should 
be a lower bound for the observed heat flux. Weinbaum has computed the heat 
flux for a Rayleigh number with the radius of the cylinder as the length scale and 
a temperature scale of half the maximum temperature difference. It is suggested 
that we should compare the heat flux for two plates separated by a distance d 
and with a temperature difference AT with the heat flux for a cylinder of diameter 
d and maximum temperature difference AT. If the Rayleigh number, R, has the 
latter length and temperature scaleswe find N = 0.1 18Rf (modified Oseen), which 
is about one-half of the value observed experimentally for flow between flat 
plates in the relevant range of Rayleigh number. 

The balance for rigid boundary conditions also holds if we postulate velocity 
boundary layers near the vertical boundaries for free vertical boundary condi- 
tions. The result N N R* has been obtained by Pillow (1952) for the periodic 
rigid case using the equivalent assumption that the buoyancy torque is balanced 
by the moment of the shear stresses on the horizontal boundaries. In  the present 
model, where we find N N R* for the periodic rigid case, the viscous torque is 
balanced by the second-order pressure. This may be shown as follows. (These 
torques are of order R; the buoyancy torque is of order R8.) 

In the horizontal boundary layers the highest-order velocity equation is 

where uBL, vBL are the boundary-layer velocities in the x,z  directions, v1 is 
the next-order interior velocity in the z direction. Integrating this equation 
over (2, I) space and making use of the boundary conditions 

gives 
(uo+uBL = vBL+vl = O on 5 = 0, uBL, vBL+O as (;-to) 

- 
(5  = 0)dx = + - U0VBL([ = 0)dx.  

g o  I= 
The viscous drag is therefore balanced in this boundary-layer problem by a con- 
vection of momentum across the boundaries. The next-order interior flow must 
balance the normal boundary-layer velocities (v,+v,, = 0 on the horizontal 
boundaries). There will therefore be momentum convection forces opposite to 
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those above acting on each horizontal boundary in the next-order interior 
problem. The interior balance is 

and, since this balance holds throughout the fluid, the momentum torque will be 
balanced by a pressure torque. Thus the highest-order viscous drag gives rise to 
a torque which is balanced by the second-order interior pressure. 

A criterion for choosing between the two models is discussed later in this paper. 

2.2. Interior solutions 

Here we introduce two assumptions basic to this cellular model; first that the 
interior streamlines are closed, and second that the interior velocity is non-zero. 
The assumptions are found to be consistent in this problem, but not for the case 
of side-to-side heating (a discussion of the latter problem is given later in this 

In  the present scaling the interior streamfunction is of order R% for free verti- 
cal boundaries and of order Rt for rigid vertical boundaries. The highest-order 
temperature equation (4) thus is in the interior 

paper). 

J ( c p l ) 7  = O* (12) 

This gives 8, = B,(Cp,); that is, 8, is constant along streamlines, which are closed. 
Since 8, is antisymmetric, this requires that 8, = 0. It is easily shown that this 
argument carries through for the lower-order interior temperature terms and 
thus 8 = 0 in the interior. 

For both sets of vertical boundary conditions we have J($,  V2$) B V4$ in 
the interior, and thus J(cp,, V2cp,) = 0 from (6). That is, 

c*cp, = G(cp,). (13) 

In the interior we have steady laminar flow with closed streamlines and no 
external force field. For such a flow Batchelor (1956) has shown that around any 
closed streamline lying entirely within the core region 

$(V x q). ds = 0, where q is the vorticity; 

i.e. $(V x V2cp,j). ds = G'(cp,) (V x (p0j ) .  ds $ 
= G'(cp,) f v,. ds 

= 0. 

Since the circulation, fv,. ds, is taken to be non-zero for this problem, 

Gfcp,) = Vzcp, = - w,, a constant. (14) 

Equation (14) may be solved satisfying the boundary condition yo = 0 on 
all boundaries. Boundary-layer solutions must be introduced in order to satisfy 
the remaining boundary conditions; and this is consistent with the original 
assumption of this work. 
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2.3. Treatment ofthe corners 

Pillow ( 1952) developed a crude approximation using a modification of Rayleigh’s 
method for the flat plate boundary to obtain an estimate of the heat transfer in 
the periodic rigid case. In  these calculations, on p. 25, we find the following re- 
mark concerning a vertical boundary layer: ‘ In  this range of t there is no heat 
conduction across the boundary AB, so that 

T(n,O)dn ( - +  < t < 0 1 . 3  

(Here t is a time-like variable 

U is the velocity parallel to the boundary; s is a co-ordinate along the boundary.) 
Since there is no heat conduction across this boundary, the heat flux in this 

boundary layer must be constant. That is, 

w ( t ) p ( n , t ) d n  = constant (-4 < t < o) ,  

where w(t)  varies in this region and w(0) = 0. Thus the above conclusion is in- 
correct and the theory breaks down at  this point; the flow must spread out in 
order of magnitude, in order to transport the heat flux round each corner. 

Once the flow has spread out, the conduction and creation terms in (4), (6) 
decrease in order of magnitude and thus in the corner regions we have 

0 

that is the boundary-layer temperature and vorticity are convected unchanged 
through this region, until they impinge on the next boundary-layer region. 

3. Calculations 
In  order to solve this problem we must find a solution which satisfies the perio- 

dicity requirement; that is, the initial profile chosen for temperature or boundary- 
layer streamfunction must be matched by the solution after it has been followed 
around one circuit of the cell. 

The calculations have been formulated in terms of the unknowns oo and A ,  
where Rho, is the interior vorticity and RaA is the heat flux convected along 
each vertical boundary layer (thus 2RaA is the heat conducted across each 
horizontal boundary). 

We obtain first the interior streamfunction and the temperature solution 
(with the Oseen approximation) and then find the solutions for the stream func- 
tion boundary layers separately for the three sets of boundary conditions. When 
the heat conducted across the horizontal boundaries has been set equal to 2RaA 
and the condition for the existence of a periodic boundary-layer stream function 
is known we have two equations from which we can find the two unknowns, A 
and w,,. 
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The interior streamfunction problem is specified by equation (14), V2cpo = - wo, 
with boundary conditions 'po = 0 on all boundaries. The solution is: 

O0 1-(-1)12 
'po(x,z) = - 2 W o C  sin nnz{sinh nnx + sinh nm(L - x) - sinh nnL). 

(nn)3 sinh nnL 
(16) 

Each boundary layer is divided into three regions where (i) the flow is imping- 
ing on the boundary (figure 2, (d ) ,  (h ) ) ,  (ii) the flow is parallel to the boundary 
( ( e ) ,  ( a ) )  and (iii) the flow is away from the boundary ( ( f ) ,  ( b ) ) ;  (g ) ,  (c) are small 
corner regions. The regions are defined by the lengths xl = X / B  in the horizontal 
boundary layers, z1 = a/B in the vertical boundary layers where X ,  a, B are 
defined by the velocity approximations stated below and illustrated in figure 1. 

FIGURE 1. Interior velocity (a) parallel to the boundary, ( b )  perpendicular to the boundary 
with the approximations used. 

The approximation used in the end regions of each boundary layer will be 
illustrated by considering the horizontal boundary-layer sub-region near x = 0. 
In this region the velocities will be approximated by 

vertical velocity M - Boo <Rb-a, 

(6 is the boundary-layer co-ordinate, 6 = R%). B is obtained by taking the first 
N terms in the series expansion for the vertical velocity and using the approxima- 
tion sinnnz M nm. 

horizontal velocity M + BwoxRb 

(17) 
N 1 - ( - 1)n coshnnL - 1 

sinh n n c  1 n7T 
B = 12wOC ___- 

Then 

The parameter 1 is introduced so that the dependence of the results on this ap- 
proximation may be studied by computation ( N  is taken to be 5 in these compu- 
tations). 



Finite amplitude convection cells 585 

In each mid-region the flow is approximately parallel to the boundary. In 
the lower horizontal boundary 

where 

horizontal velocity M - avo (- L 0)  Rb, 
a2 2' 

sinh nnL - 2 sinh 
N 1-(-1-)7L 

s = 2 c  
(nn)2 sinh nnL 

On the left (x = 0 )  vertical boundary 

where 
N 1-(-1)7L 

a = 2 2  ( - l)(*"-l)(cosh nnL - 1). 
(nn)2 sinh nnL 

0 =  -0, 

0, = 0 

Y B =  - 

- 

h 

- 

a 

6 

- 
C 

C 

b 

- 

a 

h 

- 
XI o =  +1 

FIGURE 2. Boundary-layer regions. 

An initial profile is chosen and solutions are obtained for each successive region, 
following the direction of the flow; the output from each region becoming the in- 
put to the following region. These solutions must then satisfy the periodicity 
requirement that the initial profile chosen be matched by the solution after it has 
been followed around one circuit of the cell. 

The method used for turning the corners is as follows. The incoming profile is 
known-for example the limit of the solution in region b as z -+ 0 is the input to 
the corner region c (see figure 2). This profile is carried through the corner along 
the (approximate) streamlines xz = constant and is then taken to be incident on 
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the region d at a distance of R-"9 (i.e. = 9) from the x-axis. Once the solution 
to this problem has been found 9 is taken to infinity. 

In  rigid-boundary boundary layers the modified Oseen approximation as 
described by Carrier (1965) is used. Here the velocity in the nonlinear terms is 
replaced by the interior velocity multiplied by a modified Oseen parameter (m) 
which is later calculated in some meaningful manner. The case m = 1 is then the 
classical Oseen approximation. 

The temperature calculations were first carried out for a step function input 
to region (a).  When this solution was carried around until it was again input to this 
region the temperature was found to be more closely approximated by a bilinear 
profile: 8 = 8,, constant, out t o  < = El; 8 = 8,- const. (c-cl) out to 8 = 0. 
Choice of this second profile gives a solution which satisfies the periodicity re- 
quirement. Equating the heat flux through a horizontal boundary to 2A, i.e. 

gives the following result : 

where y = r?)" x,, 

3.1. T h e  free case 

When all boundary conditions are free (V2@ = 0 on all boundaries for rectangular 
geometry), a = Q, and along each boundary there is a boundary layer of width 
N R-4 in which 8 + 0 and the vorticity, R h o  in the interior, decreases to zero. 
Since the velocities introduced by the boundary-layer streamfunctions are an 
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order of magnitude smaller than the interior velocities in the boundary layers, 
the classical Oseen approximation is exact to this order. 

A linear profile is taken as input into region ( e )  and with suitable approxima- 
tions the boundary-layer vorticity is followed round the cell until it is again input 
into region ( e ) .  These inputs are then matched and the periodicity relation 
obtained. Both the extent of this profile and a relation between A and wo are 
to be determined by this periodicity requirement. With the approximations used 
here only one relation is found and it is therefore assumed that the length scales 
of the temperature and vorticity variations in the vertical boundary layers are 
equal. The computations show that a factor of two change in the ratio of these 
lengths ( j )  introduces a variation of about 15 % in the Nusselt number. 

The relation obtained is 

where 

4(1- 22,) 1 
.=( 0 0  1 

A 2  J 4 = j - - .  
away & ' 

j 
vertical boundary layers. 

1 is the ratio of the scales of the temperature and vorticity variations in the 

The terms in this balance may be identified as 
(i) vorticity creation in the central vertical region, region (a ) ;  
(ii) creation in the other vertical regions (h)  and ( b ) ;  
(iii) conduction through the boundary of region (a);  
(iv) conduction through the boundary of region ( e ) ;  
(v) conduction through the boundaries of regions (b ) ,  ( d ) ,  (f). 



588 J .  L. Robinson 

We thus have a balance between the creation of vorticity by the buoyancy and 
the conduction of vorticity through the boundaries. 

Since H = A/2/wo and F = A/oi  defined in (20 )  and ( Z l ) ,  have only a slight 
dependence on A and wo, an iterative procedure is used in the computations, 
A = H*/F* and wo = (H/F)* being recalculated a t  the end of each iteration. 

In this work the Rayleigh number is R = gaATd3/Kv with a temperature differ- 
ence of 2AT between the plates. It is more usual to use the total temperature 
difference in the definition of the Rayleigh number, i.e. R, = g a 2 A T d 3 / ~ v .  The 
Nusselt number is N = (AIL) R* = 0-79(A/L) R f  and, since it is the second pro- 
portionality constant, 0-79A/L7 which must be compared with other work, it is 
this quantity which has been computed. The interior vorticity is similarly scaled 
using the Rayleigh number R,. 

The results of the calculations, together with values computed by Fromm 
(1965), are given in figure 3. In  both curves the Nusselt number is a maximum 

I 

I I I I 
0.5 I .o 1.5 2.0 

L 

0.6 

0.5 0" 

0.4 

0.3 

FIGURE 3. Free boundary conditions, c7 = 1. -, scaled Nusselt number versus cell width; 
m, Nusselt number values from Fromm (1965) ; - - -, scaled interior vortkity versus cell 
width; 0, interior vorticity value from Fromm (1965). 

for L z 1.4; this maximum Nusselt number is N z 0-27Rf in the present work. 
The difference of 10 yo between the results of the two theories is within the ex- 
pected error (15 %) of this work. The values for the interior vorticities are also 
in good agreement. As shown in figure 4 there is very little dependence of the 
results on the Prandtl number. 

The qualitative behaviour predicted by the theory is also in agreement with the 
computed results. In  figure 6 of Fromm (1965) we find that (i) the vorticity is 
approximately constant in the interior; (ii) the boundary layers increase in width 
along the horizontal boundaries as vorticity is conducted through these boun- 
daries and decrease in width along the vertical boundaries where both creation 
and conduction are important; (iii) the temperature in the interior is approxi- 
mately zero and there is a sharp temperature gradient where the jets impinge 
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on the horizontal boundaries, and (iv) thelwidths of the temperature and vorticity 
boundary layers are comparable. Since the value of the Rayleigh number in this 
figure (12 000) is not very large the boundary layers are still fairly wide. 

I /' I 

i 
0.7 

0.6 

0.25 
0.0 1 0.1 1 10 100 

0 

FIGURE 4. Free boundary conditions, L = 1.4. -, scaled Nusselt number versus Prandtl 
number; - - -, scaled interior vorticity versus Prandtl number. 

3.2. The rigid case 
When all boundaries are rigid, a = a. All boundary-layer velocities are of the 
same order of magnitude as the interior velocities and the Oseen approximations 
are used. Since to highest order there is no net vorticity conduction across the 
horizontal boundaries, an estimate of the heat flux/vorticity relation is obtained 
using the vorticity conduction/creation balance in the vertical boundary layers. 

In the vertical boundary layers the highest-order boundary-layer velocity equa- 
tion is 

with boundary conditions vBL+v0 = 0,  u1 +uBL = 0 on 6 = 0. On this boundary 
therefore 

i i a  a 2 ~ ~ ~  + 0. - -__  
~ 2 ax (v3 = ~ a t z  

The vorticity conduction across the boundary is 

since v,(O) = v,(l) = 0. For the horizontal boundaries the buoyancy term does 
not appear to this order and the vorticity conduction across these boundaries is 
zero. A different proof of this result is given by Pillow (1952). The highest-order 
boundary-layer vorticity is here of order (interior velocity)/6,,. If vorticity of 
this order were convected round the corners (with 6 > ?IBL, as noted above) 
this would give rise to velocities of order (vorticity x Scorner) > interior velocity. 
The highest-order vorticity will therefore be restricted to the boundary layers 
along each side of the cell, a conclusion in agreement with the computed figures of 
Fromm (1965). 
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The right-hand side of (22) is found using the results of the temperature cal- 
culations. The left-hand side will be approximated by taking 

and assuming that L(z) may be closely approximated by the Iength scale of the 
temperature variations, i.e. 

This gives 

where L(z) is now the length scale of the temperature variations. 
The required relation is 

where y ,  6 ,  etc. are as previously defined. 
An iterative procedure is again used in the computation. Since a rather crude 

approximation for 87/86 (c = 0) has been used the results are expected to be ac- 
curate to only about 30 yo. 

The calculations have been carried out with a modified Oseen approximation. 
Since this problem has not been solved in any detail a reasonable value of the 
modified Oseen parameter, m, is chosen by comparison with the similar work of 
Weinbaum (1964) for rigid boundaries and cylindrical cross-section. His values 
are: m = 0.152, 

(w,) modified Oseen 
(w,) classical Oseen 

( N )  modified Oseen 
( N )  classical Oseen 

= 2.57, 

= 0.622 for v = 1. ~- 

The results of the present work for m = 0.152 and L = 1.5 are 

(w,) modified Oseen 
(w,,) classical Oseen 

( N )  modified Oseen 
(3) classical Oseen 

= 2.56, 

= 0.625 

(the present results are independent of cr). 
Thus the modified Oseen results are independent of the choice of a criterion de- 
termining m from the three ratios given above. 

N z O.63Ri (classical Oseen, maximum at L M 2-5), 

N w 0-59R4 (classical Oseen, L M 1.5). 

The results given in figure 5 are 
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N z 0.37Rt (modified Oseen, L M 1.5), with a possible error, apart from that 
due to the Oseen approximation, of about 30 %. J. E. Promm has provided the 
author with a more detailed graph of his computed results than that given in his 
paper and the dependence R z 0.24R) for rigid boundaries (two rolls within each 
enclosure) is taken from that graph. 
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FIGURE 5 .  Rigid boundary conditions, u = 1. -, scaled Nusselt number versus cell 
width; A, modified Oseen estimate of Nusselt number; 0, cylindrical geometry, classical 
Oseen estimate of Nusselt number (Weinbaum 1964) ; Om, cylinderical geometry, modified 
Oseen estimate of Nusselt number (Weinbaum 1964); B, computed value of Nusselt 
number ( F r o m  1965); ---, scaled interior vorticity versus cell width; A, modified 
Oseen estimate of interior vorticity ; 0, cylindrical geometry, classical Oseen estimate of 
interior vorticity (Weinbaum 1964) ; Om, cylindrical geometry, modified Oseen estimate 
of interior vorticity (Weinbaum 1964); 0, computed value of interior vorticity ( F r o m  
1965). 

It appears likely that much of the difference between these results is due to the 
use of the Oseen approximations; it must be noted that the modified Oseen result 
is a decided improvement over the classical Oseen result. The heat flux 

is a local quantity in the horizontal boundary layers, being calculated at  the 
boundary rather than averaged over the entire boundary-layer region, and it is 
suggested that this may explain the large errors. 
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The qualitative behaviour predicted by the present work may be compared 
with figure 10 of Fromm (1965). Since there are two convection cells within the 
rigid boundaries this figure contains features of both the peiiodic rigid and rigid 
boundary condition cases. 

The temperature profile is similar to those for the free boundary conditions. 
Along each rigid boundary is a concentration of vorticity; each vorticity con- 
centration is restricted to the particular boundary-layer region, for both hori- 
zontal and vertical boundaries. The length scales of the vorticity and tempera- 
ture variations in the vertical boundary layers are comparable. 

3.3. Periodic rigid boundaries 

In  the case of periodic rigid boundaries the horizontal boundaries are rigid and 
the vertical boundaries are free (the boundary conditions for motion periodic in 
the horizontal direction; see Fromm (1965)). Thus a = &, and the Oseen approxi- 
mations are used in the horizontal boundary layers. 

The rigid horizontal boundaries introduce a vorticity of order R1, whereas the 
interior vorticity is of order RQ. However as in the rigid case the net vorticity 
conducted across each horizontal boundary is zero and this large vorticity is 
confined to these regions. 

As in the free case there must be a balance between vorticity creation and con- 
duction in each cell: that is, there must exist a periodic vorticity boundary-layer 
solution of order RQ. The vorticity conduction across the horizontal boundaries is 
now a second-order effect but may be calculated from the first-order solution. 

If the asymptotic expansion for the velocity is 

v = RQv,+R~,+v,+ ... +R%v,,+R~v&~+..., 

then the second-order velocity boundary-layer equation on a rigid boundary is 

with boundary conditions 

U O f U B L  = 0, 

u1 + u& = 0, v , + v ; ~ ~  = 0 on 5 = 0. 

Using these boundary conditions the equation becomes on this boundary 

211 + V B L  = 0, 

Now au,/az = - w o  on this boundary and u B L u ~  = 0 for x = 0,L. The net 
second-order vorticity conduction across this horizontal boundary is thus 
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Using this result the requirement that a periodic vorticity boundary layer should 
exist gives the following equation 

v 

(v) 
(26) 

where xl, zl, X, 2, 8, 1, are as defined previously and 

x 1.128((L-x1-x’)*- (xl-x’)$) , I 
w mw x 0- 0-4 

2: - - zl, 0 1  - 01- -1+-  
2 2 ‘zl 2m11x1a aw, 

X’ = 0 . 6 9 5 ~ ~ .  

As in the free case the terms in this balance may be identified as: 
(i) vorticity creation in the central vertical region, region (a ) ;  
(ii) creation in the other vertical regions, (h) and ( b ) ;  
(jii) conduction through the boundary of region (a); 
(iv) conduction through the boundary of regions (h) ,  ( b ) ;  
(v) conduction through the horizontal boundary regions (d  ), (e).  
One scheme for determining the modified Oseen parameter m is to substitute 

our approximate solutions in one of the nonlinear equations governing the flow 
in the boundary layers and to require that the integrated average of this over all 
boundary-layer space be zero. However, foi both the velocity and the tempera- 
ture equations, the m-dependence cancels out when the integration is performed. 
A more satisfactory method would be to minimize the integral over this space 
of the square of the function I defined below; that is to minimize 

js 12d{dx.  

Since this calculation involves a total of 25 terms it was decided to minimize 
the quantity 

38 Fluid Mech. 30 
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it is not expected that the values for m obtained from these two methods should 
differ by much. 

The function I(x, 6) is defined by substituting the approximate solutions in 
the horizontal boundary-layer velocity equation; i.e. 

The results are shown in figures 6, 8. The Nusselt number is N = 0-24R* 
(classical Oseen), N = 0.15RQ (modified Oseen), being a maximum for L = 1.4. 
The expected error in this estimate, apart from that due to the Oseen approxima- 
tions, is about 15 yo. 
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FIGURE 6. Periodic rigid boundary conditions, G = 1. -, scaled Nusselt number; - - - 
scaled interior vorticity ; c, classical Oseen estimate; m, modified Oseen estimate. 

For very large Rayleigh number and therefore turbulent motion the available 
experimental data may be fitted by N = 0.085R*. It may be reasonably argued 
that the heat flux for the laminar flow will give a lower bound t o  the heat flux 
for turbulent motion, which would indicate that the modified Oseen result is at 
least 60 % too large. This error is similar to that found in the calculations for the 
rigid case and it is suggested that these large errors are due to the use of the Oseen 
approximations (once again the modified Oseen result is a considerable improve- 
ment over the classical Oseen result). 

The $-power law dependence of the Nusselt number on the Rayleigh number 
predicted here is not followed by the results of Fromm’s computations, which may 
be fitted by N 0.19R0‘28. An explanation of this difference may be given as 
follows. 

The heat flux for free vertical boundaries is expected to be greater than that for 
rigid boundaries and this is indeed so for large enough Rayleigh number. How- 
ever for R = 4 x lo5 we have 0-24.R) = O-Q85R* and below this value the flux 
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predicted for the rigid boundaries is greater than that predicted for periodic 
vertical boundaries. It is suggested that the flow adjusts itself so as to give the 
maximum possible heat flux, and that a velocity variation will appear beside the 
vertical boundaries for R < 4 x lo5. The heat flux calculated for the rigid boun- 
daries will be a lower bound for this flow as in that case the velocities on the 
vertical boundaries were taken to be zero. 

In  figure 7 the computed results (Fromm 1965) for the periodic rigid case are 
given together with the computed curve N = 0.24Ri for the rigid case and a 

N 

1 o3 1 o4 loi 1 Oh 10' 

R 

FIGURE 7. Computed results, Fromm (1965). 0, cyclic vertical boundaries; 
x , rigid vertical boundaries. 

&-power curve N = 0.085R); the constant being adjusted to fit the experimental 
results a t  high Rayleigh number (the drop-off of the periodic rigid results above 
R = 3 x lo5 is thought to relate to insufficient resolution of the boundary layer 
(Fromm, private communication)). The Nusselt number for the periodic rigid 
case is seen to vary in the predicted manner and this also agrees well with the 
experimental results. 

Thus the model suggested by Pillow following the assumption that the buoy- 
ancy torque is balanced by the shear stress on the horizontal boundaries (equiva- 
lent to the assumption of velocity boundary layers in the vertical) is consistent 
with observations for Rcrit < R < 4 x lo5, and the model presented here, which 
assumes only those boundary layers necessary to satisfy the boundary conditions, 
is valid for R > 4 x lo5. 

The dependence of the Nusselt number and the interior vorticity on the Prandtl 
number c is shown in figure 8, together with three experimental values of the 
Nusselt number (Rossby 1966) scaled t o  the classical Oseen theoretical value 
at  = 6-8. 

The qualitative picture agrees well with the computations of Fromm (1965) 
below R N 3 x l o 5  at  which Rayleigh number som0 time dependence appears in 
the computed results. 

38-2 
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4. Turbulence 
Let us assume that turbulence or time dependence will occur when some boun- 

dary layer becomes unstable. 
~ o ~ ~ ~ ~ o n  : boundary-layer Rayleigh number R, = R(6/d)3; boundary-layer 

Reynolds number Re = u&Y/v, where ukL is the dimensional boundary-layer 
velocity, 6 is the dimensional boundary-layer width. 
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FIGURE 8. Periodic rigid boundary conditions, L = 1.4. -, scaled Nusselt number versus 
Prandtl number; - - -, scaled interior vorticity versus Prandtl number; c, classical Oseen 
estimate; rn, modified Oseen estimate ; +, sealedexperimental Nusselt number (Rosby 1966). 

In  the free case both R,, Re are independent of the Rayleigh number R in all 
boundary layers and there is no indication of possible instability. 

For periodic rigid boundary conditions we have in the horizontal boundary 
layers 6 N dR-%d and uAL N R2K/d, giving Re N RBld. There is thus a possi- 
bility of shear flow instability in the horizontal boundary layers. If turbulence 
occurs for a particular Reynolds number, then R, N d, where R, is the critical 
Rayleigh number for onset of turbulence. The boundary-layer Reynolds num- 
bers in the vertical boundaries and all the boundary-layer Rayleigh numbers are 
independent of R and there is thus no indication of any other instability. 
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We note the following two qualitative features of such a breakdown mechanism. 
They are : (i) the instabilities occur within the horizontal boundary layers and 
(ii) the vertical jets are stable. 

In  the rigid case R, N Rt, Re N Ri  in all boundary layers and both types of 
instability are possible. 

This work suggests the following quasi-steady model of turbulent convection. 
Each cell is steady until an instability in a horizontal boundary layer causes a 
new vertical jet to form (these jets forming in a random manner). If within this 
jet it  is required that balances between the vorticity creation, conduction and 
convection and heat conduction and convection hold, we obtain a +-power 
Rayleigh number dependence for the Nusselt number as for free vertical boun- 
daries of a steady convection cell. 

As long as for the major part of the time the motion is approximately steady 
the Nusselt number estimates for the steady cells will give an indication of the 
heat flux expected for turbulent motion. 

However, the Prandtl number dependence of the critical Rayleigh number for 
this breakdown does not agree well with the available experimental data and 
perhaps a different instability mechanism is involved. 

This may be compared with the similar model suggested by Howard (1965) ; 
in that work the R) Nusselt number dependence was obtained from the assump- 
tion that the heat flux at high Rayleigh number is independent of the separation 
of the plates. 

A set of equations frequently used in the study of turbulence are the mean field 
equations. These are obtained by averaging over the horizontal and neglecting 
the ‘fluctuating self-interaction’ temperature convection terms. Neglect of the 
momentum convection terms may be considered to be appropriate for large 
Prandtl number (n+ co) or may be justified by physical arguments (see, for 
example, Malkus (1956), Herring (1963)). 

It has been conjectured that the heat flux predicted using the mean field equa- 
tions maximizes the possible heat flux for the full Boussinesq equations (arguing 
that the neglected terms act only to reduce the heat flux). However Stewartson 
(1965), usingtheseequations, has~btainedac,R@~[log (c2R#)]-* dependence ofthe 
maximum heat flux for one horizontal wave-number (a = hR), h < 1), which for 
high enough Rayleigh number will be less than the flux predicted by the Rf 
power law suggested here and by Howard (1965). 

If the momentum convection term is neglected velocity boundary layers (i.e. 
shear layers) near the horizontal rigid boundaries are not possible and it is sug- 
gested that the heat conducted through these boundaries may not be convected 
away as efficiently as it would be if such boundary layers were in existence (this 
point has been discussed by Kraichnan (1962) when considering a mixing length 
theory at turbulent convection). In  fact the present model of steady convection 
cells breaks down if we take the limit cr+ 00. The boundary layer considered by 
Stewartson is a thermal boundary layer. 

We therefore find that for steady convection there will be more heat flux 
possible if the limiting process R + co, for large cr, is used than if the limiting 
process is cr-+ 00 followed by R+ co (even if the neglect of the momentum con- 
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vection terms is justified by physical arguments it remains mathematically 
equivalent to taking the limit (r -+ 00 for steady, or statistically steady, motions). 

For the cellular motion studied in the present paper the difference between the 
cases ' (T large ' and ' cr + CQ ? is to be found by a comparison of the vorticity con- 
vection and conduction in the interior; i.e. which is the largest, u-'J($, V2$) or 
V4$8 For periodic rigid boundary conditions $ N R% and therefore the criterion 
for small Prandtl number is that u < RQ, and for large enough Rayleigh numbers 
this will be true for all physical Prandtl numbers. It is uncertain whether the 
dividing criterion for (T large/small should be u N R3 or u N (R/Rcrit)*. If it  
is in fact the latter then results obtained using the mean field equations will be 
valid for many real problems ((T large and moderate R/RCr,J.  

5. Laminar free convection in a vertical slot 
In  a recent paper, Gill (1966) considers the problem of the steady motion of a 

fluid between two vertical plates which are maintained at  different temperatures 
such that the Rayleigh number of the problem is large. A model is postulated 
which seems to be in contradiction to that suggested by Batchelor (1954), and 
in good agreement with the available experimental data. Gill states that no 
reason seems to have been found for rejecting the Batchelor model on theoretical 
grounds. We present here a physical argument by which Gill's model may be 
derived from that of Batchelor. 

The Batchelor model has been derived above and predicts a constant tempera- 
ture and constant vorticity in the interior; Gill's model predicts a stratified 
interior temperature and an interior velocity smaller in order of magnitude than 
the boundary -layer velocity , 

It has been shown by Weinbaum (1964) that, for a circular cross-section cellu- 
lar motion with rigid boundaries and side-to-side heating the interior vorticity, 
u,,, is zero. 

The physical mechanism giving rise to this zero interior motion may be de- 
scribed with the aid of figure 9 which has been drawn following the assumption 
that the interior vorticity isnon-zero. Inregions a for both geometries the buoy- 
ancy forces are opposing the motion. If the viscous stresses acting on these regions 
are not sufficient to overcome the buoyancy forces the fluid there will slow down 
and the temperature difference? T - To, between these regions and the interior 
will gradually extend into the interior. Eventually when the interior motion has, 
to the highest order of magnitude? been reduced to zero by this mechanism the 
constant interior temperature will be replaced by a stable stratification. 

Weinbaum has shown that this does occur for circular geometry in the Oseen 
approximation; the assumption made here is that the physical mechanisms are 
the same for both geometries (as illustrated in figure 9) and that the interior 
vorticity will be zero in the Batchelor model for rectangular geometry as i t  is for 
circular geometry. 

Let us now re-examine the interior flow, noting that the streamlines for the 
most important interior motion (R*vl) are not now closed, and that the proof 
that 0 = 0 in the interior is no longer valid. The largest term in order of magnitude 
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in the vorticity equation is now Re, and therefore (O,), = 0. The highest-order 
interior temperature equation is now (vl. V) 8, = 0 and using the above result 
we obtain (vl. f )  = 0 (provided 8, $1 0). 

To+ A T -  

7'= T " + A T  T =  T o - A T  

a Tjaz = o 
( b )  

FIGURE 9. Cellular motion for side-ide heating following the assumption that the highest- 
order interior velocity, R h o ,  is non-zero. (a)  Circular geometry. On the circumference 
T = To - AT cos 19, where 6 is measured from the horizontal. ( a )  Rectangular geometry. 
-, isotherms, T = To; +, direction of core rotation; -++, direction of local buoyancy force. 

We have thus, in a consistent manner, and with the introduction of Batchelor's 
model as a necessary step, arrived at Gill's model for this flow, with a boundary- 
layer velocity greater in order of magnitude than the interior velocity and a non- 
zero interior temperature which is independent of the horizontal co-ordinate. 

The fact that the interior velocity is smaller in order of magnitude than the 
boundary-layer velocities allowed Gill to ignore the horizontal boundaries to a 
first approximation. 

For unit Prandtl number this flow is equivalent to that between two rotating 
horizontal flat plates provided that 

a S ~ Z  2sZ SRrd3 
- < -<  1 and T B 1, where T = 
r Q  v2 ' 

the Taylor number, is equivalent to the Rayleigh number; d is the separation of 
the plates; r is the mean radius of the region considered; fi is the mean angular 
velocity; and 6sZ is the difference of angular velocity between the two plates, 
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that is within a region at  a large radius (r/d & 1) and of radial extent of the order 
of magnitude of the separation of the plates. 

Although not all these criteria are satisfied, two features of flow between 
rotating plates as discussed in the literature (see for example Rogers & Lance 
1964; Stewartson 1953) agree with the above model. These are the existence of 
boundary layers in the horizontal velocities near the plates with a rotational 
velocity in the interior which is intermediate between that of the two disks and 
a non-zero vertical interior velocity carrying fluid from one plate to the other. 

It has been noted by Robinson (1965) that the interior flow for a simple model 
of the wind-driven ocean is not determined by the satisfaction of the inviscid 
boundary conditions, as is also the case in the problem considered here. 
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